竞赛专题讲座-几何变换
来源:http://www.jiajiao100.com/ 文章作者:dfss 2008-08-07 14:51:29

竞赛专题讲座-几何变换 | ||||||
【竞赛知识点拨】
一、 平移变换 1. 定义 设 2. 主要性质 在平移变换下,对应线段平行且相等,直线变为直线,三角形变为三角形,圆变为圆。两对应点连线段与给定的有向线段平行(共线)且相等。 二、 轴对称变换 1. 定义 设l是一条给定的直线,S是平面上的一个变换,它把平面图形F上任一点X变到X’,使得X与X‘关于直线l对称,则S叫做以l为对称轴的轴对称变换。记为X 2. 主要性质 在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分。 三、 旋转变换 1. 定义 设α是一个定角,O是一个定点,R是平面上的一个变换,它把点O仍变到O(不动点),而把平面图形F上任一点X变到X’,使得OX‘=OX,且∠XOX’=α,则R叫做绕中心O,旋转角为α的旋转变换。记为X 其中α<0时,表示∠XOX‘的始边OX到终边OX’的旋转方向为顺时针方向;α>0时,为逆时针方向。 2. 主要性质 在旋转变换下,对应线段相等,对应直线的夹角等于旋转角。 四、 位似变换 1. 定义 设O是一个定点,H是平面上的一个变换,它把平面图形F上任一点X变到X‘,使得 其中k>0时,X’在射线OX上,此时的位似变换叫做外位似;k<0时, X‘在射线OX的反向延长线上,此时的位似变换叫做内位似。 2. 主要性质 在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心。 【竞赛例题剖析】 【例1】P是平行四边形ABCD内一点,且∠PAB=∠PCB。 求证:∠PBA=∠PDA。 【分析】作变换△ABP 则△ABP≌△DCP‘,∠1=∠5,∠3=∠6。由PP’ ∴P、D、P‘、C四点共圆。故∠6=∠7,即∠3=∠4。 【例2】“风平三角形”中,AA’=BB‘=CC’=2,∠AOB‘=∠BOC’=60°。
【分析】作变换△A’OC ∴S△AOB’+S△BOC‘+S△COA’<S△OPQ= 【例3】 【分析】取AC、BD的中点E、F,令AC ∵E是AC的中点且EF∥CC’,FC‘∥EC,∴F、C’分别为AG、CG的中点。 ∴AD+BC=BG+BC≥2BC‘=A’D+BC‘。 同理可得AB+DC≥A’B+DC‘。 故当四边形为平行四边形时,周长最小。 【评注】当已知条件分散,尤其是相等的条件分散,而又不容易找出证明途径,或题目中有平行条件时,将图形的某一部分施行平移变换,常常十分凑效。 【例4】 【分析】设GH为过P的直径,F 又FF’⊥GH,AN⊥GH,∴FF‘∥AB。∴∠F’PM+∠MDF‘=∠FPN+∠EDF’ =∠EFF‘+∠EDF’=180°,∴P、M、D、F‘四点共圆。∴∠PF’M=∠PDE=∠PFN。 ∴△PFN≌△PF‘M,PN=PM。 【评注】一般结论为:已知半径为R的⊙O内一弦AB上的一点P,过P作两条相交弦CD、EF,连CF、ED交AB于M、N,已知OP=r,P到AB中点的距离为a,则 【例5】⊙O是给定锐角∠ACB内一个定圆,试在⊙O及射线CA、CB上各求一点P、Q、R,使得△PQR的周长为最小。
【分析】在圆O上任取一点P0,令P0 设P0P1交CA于E,P0P2交CB于F,则P0Q1 +Q1R1 +R1P0= P1P2=2EF。 ∵E、C、F、P0四点共圆,CP0是该圆直径,由正弦定理,EF=CP0sin∠ECF。 ∴当CP0取最小值时,EF为最小,从而△P0Q1R1的周长为最小,于是有作法: 连结OC,交圆周于P,令P 【例6】 【分析】设P ∴PQ+QR+RP= P‘’Q+QR+RP‘。 又∠A≥90°,∴∠P’AP+∠P‘’AP=2∠A≥180°,A点在线段P‘P’‘上或在凸四边形P’RQP‘’的内部。∴P‘’Q+QR+RP‘>AP’+AP‘’=2AP>2AD。 ∴PQ+QR+RP>2AD。 【评注】如果题设中有角平分线、垂线,或图形是等腰三角形、圆等轴对称图形,可以将图形或其部分进行轴对称变换。此外,也可以适当选择对称轴将一些线段的位置变更,以便于比较它们之间的大小。 【例7】 【分析】延长BP到E,使PE=BP,延长CQ到F, 使QF=CQ,则△BAE、△CAF都是等腰三角形。 显然:E 而PM 【例8】 【分析】将C ∴OO’=OB,PP‘ =PB。显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。 由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。 ∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。 【例9】⊙O与△ABC的三边BC、CA、AB分别交于点A1、A2、B1、B2、C1、C2,过上述六点分别作所在边的垂线a1、a2、b1、b2、,设a1、b2、c1三线相交于一点D。求证:a2、b1、c2三线也相交于一点。
∴a1 同理,b1 ∴a1、b2、c1的公共点D在变换R(O,180°)下的像D’也是像a2、b1、c2的公共点,即a2、b1、c2三线也相交于一点。 【例10】AD是△ABC的外接圆O的直径,过D作⊙O的切线交BC于P,连结并延长PO分别交AB、AC于M、N。求证:OM=ON。
【分析】设O ∵M、O、N三点共线,∴B、O‘、N’三点共线,且 取BC中点G,连结OG、O‘G、DG、DB。 ∵∠OGP=∠ODP=90°,∴P、D、G、O四点共圆。 ∴∠ODG=∠OPG,而由MN∥BN’有∠OPG=∠O‘BG, ∴∠ODG=∠O’BG,∴O‘、B、D、G四点共圆。 ∴∠O’GB=∠O‘DB。而∠O’DB=∠ACB,∴∠O‘GB=∠ACB,O’G∥AC, 而G是BC的中点,∴O‘是BN’的中点,O‘B= O’ N‘, ∴OM=ON。 |
相关文章
- 小学1-6年级作文素材大全
- 全国小学升初中语数英三科试题汇总
- 小学1-6年级万博体育app
- 小学1-6年级奥数类型例题讲解整理汇总
- 小学1-6年级奥数练习题整理汇总
- 小学1-6年级奥数知识点汇总
- 小学1-6年级语数英教案汇总
- 小学语数英试题资料大全
- 小学1-6年级语数英期末试题整理汇总
- 小学1-6年级语数英期中试题整理汇总
- 小学1-6年语数英单元试题整理汇总