学而思奥数天天练栏目每日精选一套高等难度的试题,各年级分开,配有详细答案及试题解析,此类试题立足于杯赛真题、综合应用和加深各知识点,适合一些志在竞赛中夺取佳绩的学生。
·本试题由武汉学而思奥数全职教师盛攀老师认证,以保证试题质量。
名师介绍:
盛攀,数学与应用数学专业,学而思专职教师,兼任奥数组主管。在高中时期,获得市级数学竞赛二等奖,化学竞赛二等奖,在大学三年级的时候,被竞选上全校仅20个名额的去北京培训的机会,大学毕业后曾在中学有超过4年的数学教学经验,主教初中一、二年级,高中一、二年级的数学,在任职期间对学生尽心尽责,每天陪着学生上自习,随时辅导学生的学习。教学特色: 课堂上的盛老师总是满怀激情,声音洪亮,富有感染力,使学生们更专心投入。偶尔发生的课堂小插曲也总能被他幽默机智的带过,短暂的欢笑声使学生们精神倍增,也不再腻味枯燥的数学课,让他们学中乐,乐于学。
·每道题的答题时间不应超过15分钟
·您可以按“下载适合打印版本试卷”获得word版本试卷进行打印
一年级天天练答案:
解:先看竖行,最上格中已有个5。要使5+( )=14,括号里的数就要填9。把9拆成两个数:9=3+6,(因为3和6是题中给出的数)分别填在竖行的两个空格里。但进一步想,应该把哪一个填在中间空格里呢?这就需要看横行。横行两头的空格应填剩下的两个数4和7,因为4和7相加和为11,而11+3=14,可见中间空格应填3。
二年级天天练答案:
解:先将错就错,算出错误的被除数是4×6=24,再把错误的24倒成正确的42,然后除以6,就是正确答案7了。
三年级天天练答案:
解:7个数字之和为:1+2+…+7=28,三个圆圈的和为:13×3=39。
那么2a+b+c+d=39-28=11,因此,a=1,b、c、d分别对应2、3、4中的一个。给出一种满足条件的填法:
四年级天天练答案:
解:从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A的车身长+B的车身长)÷(A的车速+B的车速)=两车从车头相遇到车尾离开的时间
也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.
两车车头相遇时,两车车尾相距的距离:350+280=630(米)
两车的速度和为:22+20=40(米/秒)
从车头相遇到车尾离开需要的时间为:630÷42=15(秒)
综合列式:(350+280)÷(22+20)=15(秒).
五年级天天练答案:
解:要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V人),所以,V车=l5V人。
②火车头遇到甲处与火车头遇到乙处之间的距离是:
(8+5×6O)×(V车+V人)=308×16V人=4928V人。
③求火车头遇到乙时甲、乙二人之间的距离。
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。
④求甲、乙二人过几分钟相遇?
4312V人÷2V人=2156(秒)= (分)
答:再过分钟甲乙二人相遇。
六年级天天练答案:
解:根据题意,可以把甲、乙两地之间的距离看作25,这样两地间的平路为5,从甲地去往乙地,上山路为,下山路为
;
再假设这辆车在平路上的速度为5,则上山时的速度为4,下山时的速度为6,于是,由甲地去乙地所用的总时间为:8÷4+5÷5+12÷6=5;
从乙地回到甲地时,汽车上山、下山的速度不变,但是原来的上山路变成了此时的下山路,原来的下山路变成了此时的上山路,所以回来时所用的总时间为:12÷4+5÷5+8÷6=
由于从甲地到乙地共行了10小时,所以从乙地回来时需要小时10÷5× =
小时.