例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?
解一:设这项工作的工作量是1.
甲组每人每天能完成
乙组每人每天能完成
甲组2人和乙组7人每天能完成
答:合作3天能完成这项工作.
解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.
现在已不需顾及人数,问题转化为:
甲组独做12天,乙组独做4天,问合作几天完成?
小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.
例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?
解一:仍设总工作量为1.
甲每天比乙多完成
因此这批零件的总数是
丙车间制作的零件数目是
答:丙车间制作了4200个零件.
解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.
乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知
乙、丙工作效率之比是16∶14=8∶7.
已知
甲、乙工作效率之比是 3∶2= 12∶8.
综合一起,甲、乙、丙三人工作效率之比是
12∶8∶7.
当三个车间一起做时,丙制作的零件个数是
2400÷(12- 8) × 7= 4200(个).