【答案】
在8行8列的方格表中,8行有8个和,8列也有8个和,2条对角线有2个和,所以一共有8+8+2=18(个)和。因为题目问的是,这18个和能否互不相等,所以这18个和是物品,而和的不同数值是抽屉。
按题目要求,每个和都是由1,2,3三个数中任意选8个相加而得到的。这些和中最小的是8个都是1的数相加,和是8;最大的是8个都是3的数相加,和是24。在8至24之间,不同的和只有24-8+1=17(个)。将这17个不同的和的数值作为抽屉,把各行、列、对角线的18个和作为物品。把18件物品放入17个抽屉,至少有一个抽屉中的物品数不少于2件。也就是说,这18个和不可能互不相等。
编辑推荐:数学抽屉原理练习及答案汇总
奥数网提醒:
小学数学试题、知识点、学习方法
尽在“奥数网”微信公众号