例7 一个分数,分子与分母之和是100.如果分子加23,分母加32,
解:新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此
例8 加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?所需时间是多少?
解:三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.
三人工作效率之比是
他们分别需要完成的工作量是
所需时间是
700×3=2100分钟)=35小时 .
答:甲、乙、丙分别完成700个,600个,525个零件,需要35小时.
这是三个数量按比例分配的典型例题.
例9 某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是:
甲:12∶13,乙:5∶3,丙:2∶1,
那么丙有多少名男会员?
解:甲组的人数是100÷2=50(人).
乙、丙两组男会员人数是 56-24=32 (人).
答:丙组有12名男会员.
上面解题的最后一段,实质上与“鸡兔同笼”解法一致,可以设想,“兔